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Shear banding is a commonly observed yet complex form of instability in granular media 

by which the deformation is localized in a narrow zone along a certain path. The aim of 

this study is to investigate the micromechanics of shear banding using the discrete 

element method (DEM).  For this purpose, a model was developed and calibrated to 

simulate the macroscale behavior of sand under plane strain conditions. Upon validation 

against laboratory experiments, two types of confining boundaries, displacement- and 

force-controlled, were examined to study the kinematics of shear bands. A constant 

volume test was then used to investigate the evolution of antisymmetric stresses before, 

during, and after shear band formation. The results indicate that the antisymmetric 

stresses significantly increase within the shear band throughout the loading history, but 

may not describe the precursory shear band conditions.  The DEM model is shown to 

properly capture the micromechanics of shear bands.  
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INTRODUCTION 

Introduction and Background 

Copious amounts of research have been performed to better understand strain 

localization in granular materials, and it remains a prevalent topic today (e.g., see Bardet 

1990 and Radjai et al 2017 for good review articles). Strain localization in granular 

media, often called shear bands, form under various loading conditions, and are generally 

associated with the failure of the material (Shi et al. 1999, Wang and Lade 2001, Wang et 

al. 2016).  Although much research has been done and important discoveries have been 

made, there remains much to learn about this form of instability. For example, what 

conditions precede shear band formation? How can we mathematically define those 

conditions? How can we tie our understanding of the micromechanics of shear bands into 

existing continuum models?  These are all questions that remain to be addressed.  

Extensive work has been done on shear banding in granular media, yet mostly in 

two dimensions, and in a qualitative manner. The complexity of soil as an engineering 

material lies in its micro-structure.  Soil is naturally an inhomogeneous, anisotropic, and 

elastic/plastic material which makes it difficult to predict its response to various types of 

loading (Zhao and Guo 2013, Loukidis and Ygeionomaki 2017). The relationship 

between the micro and macro scale response of a particulate material is not completely 

understood. Modern understanding of soil behavior has primarily been developed within 
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a continuum mechanics framework, which require very complex constitutive models to 

apply to granular materials (O’Sullivan, 2011). The discrete element method (DEM), 

originally proposed by Cundall and Strack (1979), is a numerical tool that can provide 

insight to individual particle interaction as well as the macro response of an assembly of 

particles. DEM has been utilized to model a wide variety of engineering applications 

including shear band development. A few recent examples include laboratory testing of 

granular media (Belheine et al. 2009, Guo and Zhao 2016) and mircromechanical 

analysis of soils (Ngo et al. 2016, Geer et al. 2017) including the localization of 

deformation that takes place. 

Objectives 

The aim of this study is to investigate the micromechanics of shear banding using DEM. 

The main objectives of this thesis include a.)  to investigate the effect of confining 

boundary conditions on the kinematics of shear bands, and b.) to examine the evolution 

of antisymmetric stresses and related variables before, during, and after shear band 

formation. The findings can provide further insight to the shear banding condition leading 

to an improved understanding regarding strain localization and failure in granular media. 

Scope and Contribution 

To achieve the given objectives, a DEM model is developed and calibrated to 

simulate the macroscale behavior of dry sand under plane strain conditions. Upon 

validation against laboratory experiments, two types of confining boundaries, 

displacement- and force-controlled, were examined to study the kinematics of shear 

bands. The displacement-controlled model is then used to investigate the evolution of 
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antisymmetric stresses before, during, and after shear band formation. The DEM model is 

used to observe how the variables in a shear band evolve with time under certain 

conditions.  

The novelty of this work comes from a philosophy for understanding shear 

banding from a perspective of order. From previous works, it is understood that the 

conditions for the shear band to develop come early in the loading history before the 

shear band is visible (e.g., Wolf et al. 2003,  Peters and Walizer 2013, Tordesillas et al. 

2014). This was shown by Peters and Walizer (2013) who observe that when the affine 

motion is subtracted from the total deformation, you are left with patterns (swirl fields) 

that match the symmetry of the shear bands formed in the simulations. These patterns are 

visible early in the loading history, which indicates that shear band formation may be the 

result of an ordered phenomenon that develops gradually throughout loading rather than 

as a sudden bifurcation. 

It is worth noting that spherical particles are used in this thesis as a 

mathematically simplified version of real soil. Also, these particles are not meant to be 

accurate depictions of the particles themselves, but to behave in such a way as to 

represent the behavior of actual particles well. In DEM studies particles are often much 

larger, and less in number than would be expected in a laboratory test, but similitude is 

obtained through dimensional analysis and calibration (Horner and Peters 2000, Coetzee 

2016, Rackl and Hanley 2017).  

In this thesis, chapter 2 presents and discusses the background information 

regarding shear banding in granular media. Special attention is paid to the continuum 

bifurcation theory and micromechanical approaches to solving shear banding problems. 
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The next portion of this work was performed in 2 phases (Figure 1.1), phase 1 being 

described in chapter 3, and phase 2 in chapter 4.  

 
 

Figure 1.1 Work flow 

The work in this thesis is performed in two phases as shown in the flow chart. Phase 1 

consist of model validation using multiple loading schemes, and phase 2 involves 

studying the micromechanics of shear bands using continuum type measures. 

In chapter 3, the initial DEM model is developed and presented, and the results for the 

calibration and kinematics of shear bands are discussed for two cases of confinement 

conditions: displacement- and stress-controlled. Chapter 4 discusses various methods used 

in the literature to identify shear band onset and evolution. Further, the formulation for the 

antisymmetric stress tensor is introduced as a potential identifier of shear band formation. 

The effects of several variables including rotation, moments, porosity, and antisymmetric 
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stresses and their role in shear band formation are studied and discussed.  Finally, in chapter 

5, the summary and conclusions from the thesis, as well as recommendations for future 

research are presented.  
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BACKGROUND 

A portion of chapter has been published as a conference article in Proc., 

Geotechnical Frontiers 2017: Geotechnical Materials, Modeling, and Testing, 

Geotechnical Special Publication No. 280, March 12-15, 2017, Orlando, FL, pp. 519-528. 

The original paper may be accessed at http://dx.doi.org/ 10.1061/9780784480472.054. 

Moreover, the paper has been reformatted and replicated herein with minor modifications 

in order to outfit the purposes of this thesis. 

Introduction  

Shear banding in soil is a form of instability in which deformation localizes into a 

narrow band during loading. Inside the shear band large plastic deformation occurs, while 

homogeneous deformation continues outside of the shear band. The onset of shear 

banding is generally associated with the beginning of failure for a material, where failure 

is considered to be the point in the stress-strain history when the material begins to 

experience excessive instability within a localized zone, and is no longer able to recover 

strength. This is not to be confused with other types of instability, such as liquefaction, 

where soil is destabilized by vibration and caused to behave like a fluid.  

Within the field of geotechnical engineering, the study of shear bands is 

applicable to many problems. Problems that are characterized by a plane strain state (e.g., 

strip footings, levees, retaining walls, embankments, etc.) are often susceptible to this 
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type of instability. In slope stability and landslide analysis, the failure plane of a mass of 

mobilized soil is often considered a thin shear zone which could be modeled as a shear 

band (Donald and Chen 1997; Van Asch et al 2007; Laouafa and Darve 2002). Also, the 

shear banding is the primary mode of failure for off road vehicle mobility analysis of soil 

(Senatore et al. 2013, Maciejewski and Jarzebowski 2002, Senatore and Iagnemma 

2014). 

Shear banding in granular media has been widely studied in geotechnical 

engineering for the past 4 decades. For a topic so intensely researched, to make a small 

contribution regarding the understanding of shear bands in granular media is significant. 

In this chapter, an introduction is given to the problem of shear banding, and the 

background necessary to study the shear banding problem is presented. First, the 

motivation for studying shear bands in granular media and the historical overview of the 

topic is summarized in section 2.2. Sections 2.3 and 2.4 contain a discussion on the two 

major approaches to studying shear bands: continuum bifurcation theory, and 

micromechanical approaches. Finally, the basics of Cosserat theory is presented as a 

means of understanding micromechanics in continuum terms. 

Historical Development  

The study of shear banding emanates from the study of friction. Some of the 

earliest known scientific work on the study of frictional materials is that of Leonardo da 

Vinci (1452–1519). Hutchings (2016) notes that da Vinci is widely credited with defining 

the two fundamental principles of friction: 1) the force of friction between two surfaces is 

proportional to the load pressing the surfaces together, and 2) the force of friction is 

independent of the contact area between the two surfaces. Nearly 250 years later in 1773, 
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Coulomb, building on the work of his predecessors, laid the foundation for modern soil 

mechanics with his treatment of the “thrust of soil” behind a retained wall (Heyman 

1972). He developed the formulation of the so-called Coulomb equation which, in its 

familiar form is expressed as,   

 |τ| =  𝑐 +  σtan𝜙, (1.1) 

where τ is the shear stress on the failure plane, σ is normal the stress, 𝑐 is 

cohesion, and 𝜙 is the angle of internal friction. Equation (1) is the generalized form of 

Coulomb’s equation as expressed in the seminal work of Otto Mohr (1900). It is often 

referred to as the Mohr-Coulomb equation, although Mohr’s work was done without 

explicit reference to Coulomb (Vardoulakis and Sulem 1995). Since the work of Mohr 

(1900), strain localization in engineering mechanics has received a lot of attention. Figure 

2.1 shows a sketch of the original figures used in Coulomb’s Essai (1773), and Mohr’s 

(1900) paper. 
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Figure 2.1 Early figures in the study of frictional media 

A sketch of the original figures adapted from a.) the Coulomb (1773) retaining wall 

problem, and b.) Mohr’s circle (from Mohr 1900). 

The modeling and analysis of shear banding in engineering mechanics has fallen 

under two general categories: 1) continuum bifurcation theory and 2) micromechanical 

analysis. Historically, continuum methods have dominated the research, however, since 
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around the year 2000, micromechanical approaches have gained popularity due to 

improved imaging techniques and the advancement and availability of computational 

resources.  

Continuum Bifurcation Theory 

French mathematician Jacques Hadamard (1903) originally proposed a framework for 

mathematically describing strain localization in a continuum. Then, Thomas (1961) and 

Hill (1962) were among the first to further develop the strain localization theory for 

applications of “slip bands” in metals. Finally, Rice (1973) and Rudnicki and Rice (1975) 

developed the two-dimensional strain localization for geomaterials which sparked great 

interest from geotechnitians.  

 In general, three continuum approaches have been used to the study the localization 

of plastic deformation due to shear banding in solids: wave propagation analysis (Hill, 

1952, Thomas 1961, and Hill 1962), bifurcation analysis (Rudniki and Rice 1975, Peters 

et al. 1988, and Vardoulakis and Sulem 1995), and uniqueness of solution (Valanis et al. 

1993, Valanis and Peters 1996). An introduction of these approaches has been given by 

Rice (1976), and Valanis et al. (1993) show that all three approaches are essentially 

equivalent.  

Of the aforementioned approaches, bifurcation analysis tends to be the dominant 

approach for describing shear bands in soil mechanics. In this case, shear banding is a form 

of bifurcation behavior in which the governing equations have two solution paths, one the 

“trivial” uniform strain solution and one the shear banding solution. In other words, shear 

bands appear in a material because of the bifurcation in the solution of the boundary value 

problem in which one solution yields linearly varying displacements from uniform strain, 
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and the second solution forms concentrated strains within an isolated surface (Peters at al. 

1988). Rudniki and Rice (1975), among others, give the theoretical framework for 

considering shear banding as a bifurcation problem. Their work shows that the failure plane 

of the shear band can be predicted from the constitutive equations. Rudniki and Rice (1975) 

also show that the condition for shear banding does not necessarily coincide with the peak 

of the stress-strain curve (i.e., that the time of shear banding onset in the stress-strain history 

differed depending on the state of stress). 

Vardoulakis et al. (1978) considered strain localization in biaxial tests on dry sand. 

This pioneering work of considering strength characteristics of sand as a bifurcation 

problem is based on an approach taken from studies on metal plasticity and rock mechanics. 

They found that the material response and loading configuration determine the bifurcation 

mode. They investigate the validity of the well-known Coulomb law and Roscoe solution 

for predicting the orientation of the slip surface in dry sand. Equation 1 shows the Coulomb 

law for predicting the orientation of a slip surface 𝜃 for a peak friction angle ϕp. 

 𝜃 =  ± (45° +  
𝜙𝑝

2
) (1.2) 

The Roscoe solution defines the slip surface inclination as 

 𝜃 =  ± (45° +  
𝑣

2
) (1.3) 

 where v (nu) is the angle of dilatancy as defined by the flow rule 

  sin𝑣 =  
𝜀̇1

𝑝𝑙
+𝜀̇2

𝑝𝑙

𝜀̇1
𝑝𝑙

−𝜀̇2
𝑝𝑙 (1.4) 

which assumes St. V𝑒́nant’s rule of coaxiality for principal stresses and plastic strain rate. 

Their work shows that each of these solutions are valid for special cases, but the actual 

shear band inclination is extremely sensitive to the boundary condition and is not well 
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predicted by either model.  Vardoulakis (1980) extend the Vardoulakis et al. (1978) work 

to show that theoretical solution of the shear band inclination could be better predicted by 

the geometrical mean of the classic Coulomb and Roscoe solutions. 

Also, aimed at verifying some of the conclusions of Rudniki and Rice (1975), Peters 

et al. (1988) experimentally verified that the conditions for shear band formation depend 

on the stress conditions and occur at different points on the stress-strain curve depending 

on the test configuration. Their work compares the shear banding response of sand by 

comparing triaxial compression and extension, as well as plane strain compression tests. 

They found that the axisymmetric configuration is more stable than the plane strain 

configuration even after the onset of strain localization. Their findings also show that the 

localized instability cannot be adequately captured by the constitutive laws. 

It is important to recognize the limitations of bifurcation analysis in regard to the 

traditional continuum approaches. Firstly, problems that involve large continuous 

deformations in soil mechanics are beyond the capabilities of numerical methods based on 

continuum mechanics. Important mechanisms that drive shear band behavior occur at the 

particle scale which requires knowledge of individual particle motion and continuum based 

models do not capture the kinematics of motion of a real soil system at the particle scale 

(Horner and Peters 2000). Among the issues at the particle scale are shear band thickness 

(Mühlhaus and Vardoulakis 1987; Tordesillas et al. 2004), granular diffusion, and the large 

deformations that occur.  

Micromechanics 

The approach considered in this thesis falls under the category of 

micromechanics. Micromechanics is the branch of soil mechanics that deals with 
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interparticle constituents in addition to the macroscale properties. The study of 

micromechanics is not meant to be a replacement for the past century of constitutive 

model development, rather it is a means of improving and informing those models by 

understanding the mechanisms that drive the constitutive behavior on the particle scale. 

Figure 2.2 presents a sketch of the relevant scales involved in the strain localization 

problem as defined in this thesis. There are the contact and particle scales from which we 

define how the granular material behaves at the system and macroscales. Next, there are 

the system/assembly and prototype scales, which would characterize the different scales 

found in laboratory testing. Finally, there is the field, structure, or macroscale. 

 

Figure 2.2 Multiscale nature of granular media 

Problems in granular mechanics span multiple length scales from individual particles, to 

small clusters, to macroscale systems. An understanding of the mechanics on every scale 

is essential to solving instability problems. 

 The micromechanical approach to shear band research in the past has been mostly 

qualitative and in two dimensions. Early photoelastic visualizations (Wakabayashi 1950, 

Dantu 1957) and laboratory testing (Oda 1972, Oda et al. 1978) revealed the inhomogeneity 

and anisotropy of granular systems (Cundall and Strack 1979, Radjai et al. 2017). However, 
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soil fabric evolution and particle kinematics are very hard to quantify in 3D physical testing 

(Saadatfar et al. 2012). Brodu et al. (2015) use refractive index matching tomography to 

characterize microscopic characteristics of 3D granular packings. With this method, they 

are able to obtain contact force vector data while the system is deforming. This information 

can be used with other tomographic imaging techniques (e.g., microCT, and confocal 

microscopy) to better understand discontinuities in granular media (Brodu et al. 2015). 

However, it is still very difficult to use these techniques on soil due to the complex force 

network of the particle packings and the vast number of grains involved.  

 Perhaps the most promising tool for studying the micromechanics of granular 

materials is the discrete element method (DEM).  Cundall and Strack (1979, 1983) 

developed the discrete element method (DEM), which revolutionized the study of granular 

media. DEM is a numerical tool that can provide insight to individual particle interactions 

as well as the macro response of an assembly of particles. For simple contact laws and 

calculation efficiency, it is common to use spherical particles to model soil in DEM. It is 

key to understand that, while spherical particles can be used to simulate realistic behavior, 

they are not able to replicate the micromechanics of real sand and have to be artificially 

calibrated to do so. 

  To account for the angularity and friction found in real soils, rolling resistance at 

particle contacts can be added for realistic behavior (Iwashita and Oda 1998). This type of 

study has given key insight to the micromechanics of shear bands. Iwashita and Oda (2000) 

show how particles under a load are arranged into force chains that carry most of the stress 

in the assembly. Under further loading the micro-structure becomes increasingly 

anisotropic, resulting in the breakdown of the force chains which cause instability (shear 
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bands). Following the intense strain softening, a new micro-structure is developed and a 

stable residual state is reached (Iwashita and Oda 2000). This behavior is experimentally 

verified in laboratory tests, and is also discussed in this study.  

 With modern laboratory data and understanding of soil behavior, it is possible to 

develop a DEM model that is able to analyze a large continuum of soil-like particles at the 

individual particle level. Thus, more accurate constitutive models can be developed for 

practical implementation which is one of the primary objectives of this research: to develop 

a realistic method of simulating soils such that the information provided at the discrete 

scale can fuel the understanding of engineering behavior at the prototype and macro scales. 

One of the potential ways of bridging the gap between discrete and continuum models is 

the use of a micro-polar continuum theory like Cosserat theory, which is introduced in 

chapter 4 of this thesis.  
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KINEMATICS OF SHEAR BANDS IN PLANE STRAIN DEM SIMULATIONS 

“Portions of this chapter have been published as a conference article in Proc., 

Geotechnical Frontiers 2017: Geotechnical Materials, Modeling, and Testing, 

Geotechnical Special Publication No. 280, March 12-15, 2017, Orlando, FL, pp. 519-528. 

The original paper may be accessed at http://dx.doi.org/ 10.1061/9780784480472.054. 

Furthermore, the paper has been reformatted and replicated herein with minor 

modifications in order to outfit the purposes of this thesis.” 

Introduction 

Extensive experimental and analytical studies have been performed in the past 40 

years to describe the mechanics of shear banding in granular materials and to explore the 

robustness of related numerical models. Advances in laboratory imaging, coupled with 

the use of the discrete element method (DEM) to simulate particle systems, combined 

with new statistical methods based on network theory has given the key steps in 

discovering the evolution of the shear localization process. 

The mechanics of shear bands have been studied extensively both experimentally 

and analytically, yet mostly in a qualitative manner and in two-dimensions. The evolution 

of the micro-deformation mechanism leading to the development of shear bands is still 

not well understood and has important implications in three-dimensional analysis. 

Presented herein is a promising method of modeling the micromechanics of the shear 
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band phenomenon in plane strain using parallelized discrete element method (DEM). The 

preliminary results show the DEM’s capability of responding correctly to different 

loading conditions giving an accurate depiction of the behavior of real soil. The 

preliminary results from the DEM simulations are presented and discussed. 

The purpose of this study is to qualitatively capture the kinematics of shear bands 

using a three-dimensional discrete element model in plane strain. The greater vision of 

this work is to provide a functional model capable of handling large systems using high 

performance computing, with an aim towards either modeling prototype scale 

experiments with high microscale resolution and a sufficiently large domain. First, a 

discussion on the discrete element method (DEM) as a capable tool for this task is 

presented. Next, the results from parallelized DEM plane strain tests are presented for 

systems under two different loading mechanisms. Each loading condition results in a 

well-defined and unique shear band proving the validity of the model.  This provides a 

means of extending the plethora of work done using two dimensional systems of discs, 

into three dimensional studies which are more limited.  

DEM for Studying Shear Bands in Soil 

DEM, originally developed by Cundall and Strack (1979) for granular mechanics, 

is a numerical tool that can provide insight to individual particle interactions as well as 

the macro response of an assembly of particles. DEM explicitly considers the motions 

and forces of individual particles, which makes it an appropriate candidate for modelling 

granular media, such as soil, at length scales where the material does not behave as a 

continuum.  
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In DEM particles are represented by geometrically simple idealizations of the 

natural granular material such as soil. Spheres, ellipsoids, and combinations of spheres 

and ellipsoids are commonly used because of their simply geometry.  The particles move 

by either translation, rotation, or a combination of the two. The position of the particles in 

DEM are calculated by integrating Newton’s second law for linear and angular 

momentum, 𝐹 = 𝑚𝑎 and 𝜏 = 𝐼𝛼,  where F is the force vector, m is the mass, and a is 

acceleration associated with each particle; 𝜏 is the net external torque on the particle, I is 

the moment of inertia, and 𝛼 the angular acceleration. The movement of each particle is 

defined by 6 kinematic variables, 3 linear velocity components, and 3 rotational velocity 

components. Depending on the particle geometry (spheres in this case), the contacts of 

particles with other particles are calculated by an idealized overlapping called the soft-

sphere approach (Figure 3.1).  

 

Figure 3.1 Soft-sphere approach to DEM. 

Illustration of the soft sphere approach by which inter-particle forces and moments 

between particles A and 𝐵 are calculated as a function of particle overlap, δ, at the 

contacts 
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Actual particles deform when they come into contact with each other, but the particles in 

DEM are allowed to overlap, and this overlap defines the force and moment associated 

with the contact. The positions of the particles for the next instance of time are computed 

using explicit time integration. That is, the particle location in the next time step depends 

only on the current configuration.  

Materials and Methods 

The plane strain simulations performed in this initial phase of the study were 

carried out using a three-dimensional discrete element code developed via collaboration 

between the US Army Corps of Engineers Research and Development Center (ERDC) in 

Vicksburg, MS and Mississippi State University. The code is useful for a variety of 

engineering applications, and is capable of simulating various geotechnical laboratory 

tests. The plane strain configuration was chosen for two main reasons. First, this 

configuration lends itself to many naturally occurring situations of interest to 

geotechnical engineers (e.g., levees, dams, retaining walls, strip footings, etc.). Second, 

the plane strain apparatus is a three-dimensional test that produces nominal two-

dimensional deformation (yet with 3-D particle motion). Thus, highly visible shear bands 

are produced across the plane strain face. The research presented here will focus on the 

implications of the latter reason.  

The plane strain simulations performed in this study employ a strain rate 

controlled test that uses velocity driven walls. The effects of loading conditions on shear 

band formation was investigated using a granular assembly consisting of smooth 

unbonded spherical particles whose properties are summarized in Table 3.1. The particles 

are bound by frictionless rigid platens that do not interact with each other during the 
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consolidation and loading processes. The soil particle contact forces are computed from 

simple binary models involving springs, dashpots, and frictional sliders. The acceleration, 

velocity and displacement of the particles are then calculated according to Newton’s laws 

of motion. The mathematical details of the code and DEM in general can be found in the 

literature (Carrillo et al. 1996; Horner et al. 2001; Walsh et al. 2007). 

Table 3.1 Properties and Values Used in the DEM Simulations 

Property Units Value 

Number of particles – 64,000 

Maximum radius m 0.010 

Minimum radius m 0.005 

Normal stiffness kN/m 245.18 

Shear stiffness kN/m 87.56 

Contact friction (sliding) – 0.50 

Contact friction (rolling) N-m 0.01 

Initial specimen height, z m 0.60 

Initial specimen width, y m 0.30 

Initial specimen thickness, x m 0.15 

Initial area porosity – 0.364 

Specific gravity – 2.65 

 

Figure 3.2 The reference assembly 

64,000 particles initial reference assembly shown in a.) the front view (x facing) and b.) a 

perspective view. Plane strain and confining platens not shown for clarity. 
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The particle assemblies were generated in a loose initial configuration in which no 

particles were touching. Without the bias of gravity, the particles were slowly 

consolidated without friction by applying velocities to the bounding platens until the 

desired confining pressure (55 kPa) was reached. This final initial packing, referred to 

from here on as the reference assembly (Figure 3.2), was used for each simulation. 

For the initial phase of the study, the simulation size was restricted to 64,000 

particles representing an assemblage of approximately 20 × 40 × 80D50 which is large 

enough to capture important shear band characteristics and macroscale behavior. The 

initial consolidation is stopped when the specimen reaches an internal confining pressure 

of approximately 55 kPa. The z axis is the vertical direction, x the direction of zero strain, 

and y the direction of lateral strain. The x dimension is equal to half of the y dimension 

Deformation of the reference assembly was controlled in two ways: displacement driven 

confining boundaries or strain controlled, and force driven confining boundaries. 

The first type of test, referred to as the displacement-controlled test, the 

boundaries are velocity driven, and thus deformation is controlled by a constant strain 

rate. This test is approximately constant volume. In the second type of test the boundaries 

are controlled using a constant force and is referred to as the force-controlled test. For the 

displacement-controlled tests, the particles were confined by the rigid platens lengthening 

in the y dimension which held the particles at a near constant confining pressure in the y 

direction and in a state of near-constant volume. For the force driven boundary condition, 

the reference assembly was confined using a constant force applied to the y platens. For 

this loading condition, the force remained constant causing the particles to steadily 

increase in confining pressure until instability visually occurred. During loading, the z 
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dimension was reduced at an equal and constant rate from the bottom of the assembly for 

both types of test. 

DEM Calibration 

The method used to calibrate the model was to adjust micro-scale parameters that 

govern the macro-scale behavior, until a suitable match with macro-scale behavior is 

obtained. This is done so that the model is capable of solving problems across multiple 

spatial scales while honoring the natural kinematics of the particles. The goal is not 

necessarily to achieve realistic particle size or shape, rather it is to achieve realistic 

particle-scale and system-scale behavior.  

For model calibration, it was found that inter-particle rolling friction (Figure 3.3) 

and sliding friction (Figure 3.4) had the most profound effect on the stress-strain behavior 

of the system. A parametric study was performed where these friction parameters were 

varied until stress-strain behavior similar to that of laboratory plane strain tests on sand 

was achieved (Alshibli and Sture 2000). The properties listed in the aforementioned 

Table 3.1 were found to be sufficient for achieving system level behavior as well as 

natural particle kinematics. 
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Figure 3.3 Rolling friction calibration 

The effect of changing the rolling friction coefficient, 𝜇𝑟,  on the shape of the stress-

strain curve where 𝜇𝑠 = 0.5. 

 

Figure 3.4 Sliding friction calibration 

The effect of changing the sliding friction coefficient, 𝜇𝑠, on the shape of the stress-strain 

curve where 𝜇𝑟 = 0.01. 
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Figure 3.3 shows the profound impact that the rolling resistance has on the 

macroscale behavior of the system. However, once the proper shape of the stress strain 

curve is achieved with the rolling resistance, the overall strength of the system can be 

easily adjusted with small changes in the sliding friction (Figure 3.4). One thing to note is 

that the relationship between rolling and sliding friction to get a specified PSR is not 

unique, and should be coupled with another parameter such as the constant volume 

friction angle to get a unique pair.  

Simulation Results 

Plane strain tests were performed under two stress paths using the reference 

assembly discussed above. Figure 3.5 and Figure 3.6 show the stress-strain response of 

the assembly to displacement-controlled (velocity displaced) and force-controlled 

simulations, respectively. In each case the deforming system undergoes homogeneous 

deformation until, after a peak stress is reached, at which point a sharp drop in stress 

occurs. This softening is the result of material behavior inside the shear band where the 

particle kinematics is dominated by rotation and force-chain buckling.  

The diamond symbol on the curves represent the point where shear localization 

becomes visually evident. At this point the particles organize the global specimen into 

two or more distinct sections as indicated visually by the coloring of the particles 

according to their velocity as shown in Figure 3.7. Figure 3.5 corresponds to the shear 

band shown in Figure 3.7a and 3.7b and Figure 3.6 corresponds to the shear band in 

Figure 3.7c and 3.7d. In each case shear banding begins near the peak of the stress-strain 

curve indicating that the intense softening occurs as a result of the instability. The shear 

bands initiated at 3.2% and 3.8% strain for the displacement-controlled and force-
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controlled specimens, respectively. This result seems to be within reasonable agreement 

with similar laboratory experiments on sand (see Alshibli and Sture 2000).  

The peak friction angles for each specimen was measured to be 45.6˚ for the 

strain controlled and 44.9˚ for the force controlled. According to the Coulomb theory 

stated above this should yield a slip angle of 67.8˚ and 67.5˚ for each case, respectively. 

The inclination of the shear bands was measured to be about 60˚ for each case at peak 

stress values.  Thus, the Coulomb failure law for predicting the slip surface over predicts 

the inclination angle in the case of shear band formation in this granular assembly.  
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Figure 3.5 Displacement-controlled simulation stress – strain behavior 

Displacement-controlled simulation showing a.) stress - strain behavior and b.) the stress 

path. The diamond symbol marks the onset of shear banding for each case. 

 

Figure 3.6 Force-controlled simulation stress – strain behavior 

Force-controlled simulation showing a.) stress - strain behavior and b.) the stress path. 

The diamond symbol marks the onset of shear banding for each case. 
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Figure 3.7 Visualizations of shear bands for each simulation 

Parts a.) and b.) show two views and visualization types for the shear band in the 

displacement-controlled simulation, while c.) and d.) show the force-controlled. 

In Figure 3.7, the grid lines clearly show the kinematic constraints imposed by the 

rigid boundary. Vertical lines inside the specimen clearly show the “buckling” 

deformation related to shear band formation, whereas those on the boundary remain 

straight, thus stabilizing an exterior rind of particles. 

While the purpose of this study is to impose different loading regimes to the same 

reference assembly, it should be noted that the response is dependent on the initial 

configuration of the particles. Gu et al. (2014) used DEM to simulate drained biaxial tests 
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with different initial confining pressures and densities in an attempt to find the correlation 

between the occurrence of shear banding and evolution of the microstructure. They show 

that the loose state with high confining pressure delays the appearance of shear bands, 

and that the initial conditions also effect the anatomy of the shear band (e.g., higher 

density and higher confining pressures decrease shear band thickness and increase the 

inclination angle). 

Effects of Boundary Conditions 

Meeting the complex requirements of more sophisticated experiments involves a 

number of combinations of rigid and flexible boundary conditions. The effects of these 

boundary conditions are often overlooked because it is assumed that controlled stress and 

controlled displacement boundary conditions should give comparable results. However, 

there is evidence that the choice of boundary condition does impact results, most likely 

the result of the finite-sized particles that make up a granular domain. Several 

investigations are planned to evaluate this condition including using a membrane to 

produce flexible stress-controlled boundary conditions and reducing particle size relative 

to specimen dimension. 

Laboratory tests performed on cubical specimens of both stiff and flexible 

boundaries show that specimens with stiff boundaries had greater stress-strain moduli, 

lower strain to failure ratios and higher strengths than those using flexible boundaries 

(Lade and Wang 2012 and Lade et al. 2014). This behavior is speculated to be attributed 

in part to the support of force chains along the boundaries due to the stiff platens. The 

particles line up along the plane of the platen, which allows them to have an exaggerated 

stiffness and resistance. In effect, the stiff platen provides support that promotes stability. 
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Similar findings appear in micro-mechanical research of particles being modeled 

using the discrete element method (DEM). Peters and Walizer (2013) observed that upon 

subtraction of the average uniform strain from the total deformation field in simulated 

two dimensional biaxial compression a background deformation of vortex-like flow 

patterns (swirls) are revealed. This background deformation field is controlled by the 

boundary conditions and can be shown to define the eventual shear localization pattern. 

The swirls result from the breaking down of force chains which releases kinetic energy 

into the system and drives particle diffusion. Figure 3.8 shows this behavior as well. 

 

Figure 3.8 Effects of rigid boundaries 

Particles beginning to line up in the corners forming platen – supported force chains 

capable of yielding higher than normal stresses at the boundaries. 

The author is currently working on a method for testing the effects of this behavior by 

introducing a flexible membrane boundary condition, which will allow the particles move 

in a more natural way at the boundaries.  
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Conclusions 

Continuum analysis will always be an important tool in soil mechanics and 

geotechnical engineering. However, many mechanisms that cause failure and instability 

in soil happen at the micro (granular) scale. Studying these phenomena and physically 

describing them is an important factor in improving the quality of continuum constitutive 

relationships. The discrete element method was employed to study the effects two types 

of laboratory loading conditions in plane strain. One condition was a displacement-

controlled confining pressure and the other condition a forced-controlled confining 

pressure. 

Preliminary results show that at variance with expectations for a theoretical 

continuum, the discrete material performs differently for displacement control versus 

stress control. This appears to be consistent with recent results for physical tests on sand. 

There is a close qualitative comparison between shear banding and load-deformation 

behavior that is similar to physical tests on sand. The DEM provides a detailed picture of 

the mechanisms controlling shear band evolution. 
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INVESTIGATING THE ROLE OF ANTISYMMETRIC STRESSES IN SHEAR BAND 

EVOLUTION 

Introduction 

Strain localization in the form of shear banding is a well-known issue in soil 

stability. Shear bands are commonly observed in geologic faults (Rice 2006, Marone and 

Kilgore 1993), laboratory testing of soils (Peters et al. 1988, Alshibli and Sture 2000, 

Sadrekarimi and Olson 2009), terramechanics (Senatore et al. 2013, Maciejewski and 

Jarzebowski 2002, Senatore and Iagnemma 2014), and many other applications in 

granular media. Studying the problem of shear banding is of great value because of the 

insight it will give to understanding and predicting the failure of a material. Shear 

banding occurs when the deformation of a material localizes into a thin zone. Inside the 

shear band large plastic deformation occurs, while homogeneous deformation continues 

outside of the shear band.   

Stress in granular materials is primarily transferred through columns of individual 

particles called force chains (Majmudar and Behringer 2005).  The buckling of these 

force chains, which occur on the particle scale, causes instability that leads to shear band 

development (Oda et al. 2004, Tordesillas and Muthuswamy 2009). This is of utmost 

importance in civil engineering where stress is a primary design factor for geotechnical 

structures. Upon loading, fabric anisotropies are induced which effect the materials 
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strength, stiffness, and permeability (Kuhn et al. 2015).  These anisotropies can be 

effectively quantified and studied using micromechanical techniques such as DEM and 

digital imaging (Kuhn et. al. 2015, Majmudar and Behringer 2005).  Other important 

micrometrical considerations in granular media include (but is not limited to) jamming 

(Majmudar et al. 2007, Tordesillas 2007), force transmission (Azéma et al. 2007), and 

particle diffusion (Ottino and Khakhar 2000), all of which have implications to modeling 

instability and shear banding.  

In this study, plane strain discrete element simulations are used to collect data 

about shear band formation. The data include particle motions (velocity, acceleration, 

rotations, etc.), stresses, moments, contact forces, and number of contacts. Of particular 

interest is exploring the role of the antisymmetric stress tensor in shear banding. To do 

this, first, we will introduce the antisymmetric stress tensor and develop the reasoning for 

looking at it during shear band formation. Then, the plain strain DEM model used in this 

study is presented and discussed. Next, an exploratory data analysis including 

visualizations of the entire strain history of the simulations are presented. Finally, the 

results show that the antisymmetric stresses significantly increase within the shear band 

throughout the loading history, but may not describe the precursory shear band conditions 

as hypothesized. 

The motivation behind the investigation of the antisymmetric stresses comes from 

the study of particle rotations (e.g., Bardetand and Proubet 1991, Oda and Kazama 1998) 

which are observed in numerical simulations and physical laboratory tests of shear bands. 

If rotations occur, there must be moments that resist the rotations before they happen. It 

can be shown that these moments in DEM (the contact couples), when combined with the 
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moments caused by the intergranular forces, are scaled antisymmetric stresses (by a 

constant of volume), from which we get the motivation to study them as a characteristic 

of shear band behavior. However, relationship between the rotations and the 

antisymmetric stresses, and their evolution as shear banding proceeds, has not been 

explored. 

Identification of Shear Banding in Granular Media 

Generally, shear bands in granular media have been studied from the perspective 

of bifurcation analysis (Rudniki and Rice 1975, Vardoulakis et al. 1978). A bifurcation is 

a form of instability where the solution to the governing equation bifurcates into two or 

more solution paths. In granular media, the so-called trivial solution to the constitutive 

equation is homogeneous deformation, and the bifurcation solution is the shear band. 

Understanding shear bands from this perspective has led to great advancements in the 

study of instabilities of granular materials.  Yet, evidence from the study of nonaffine 

particle motion and vortices in numerical simulations (Peters and Walizer 2013, 

Tordesillas et al. 2014) shear banding can be understood as more of an emergent behavior 

that is present from the beginning of the solution.  

In practice, shear bands are usually characterized by their orientation, 𝜃, and the 

patterns that they form (see Figure 4.1). Desrues and Viggiani (2004) give a show a 

plethora of possible shear band patterns using stereophotogrammetry to measure 

deformations and strain fields in plane strain tests under a variety of initial conditions and 

that the shear band width and orientations do not fully describe the band throughout the 

entire test.  Laboratory tests on physical sand report shear band orientations from 

approximately 45° to 70° under plane strain conditions (Vardoulakis et al. 1978, Alshibli 
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and Sture 2000). The large range of variation in the shear band inclinations are caused by 

material variability, differing initial conditions, loading regimes, and boundary 

conditions. Testing configuration, bedding planes, principal stress directions and other 

parameters are also known to cause variability in shear band patterns and orientations 

(Peters et al. 1988, Wang and Lade 2001. Lade et al. 2014). 

 

 

 
 

Figure 4.1 Common shear band patterns 

a) Illustration of the shear band orientation, 𝜃, and b) – d) common patterns observed in 

laboratory and numerical tests of soil. 

Identifying shear band onset and evolution is generally done in a qualitative 

manner by imposing a grid on the membrane of the soil, and watching as the grid 

heterogeneously deforms along the shear band, and homogeneously deforms outside of 

the band. Figure 4.2 shows an illustration of how this is done using a physical plane strain 

specimen (from Alshibli and Sture (2000) and using a DEM visualization. 

 

𝜃 

a) b) c) d) 
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Figure 4.2 Observing shear band onset and patterns using the grid method 

A side by side comparison of a similar shear banding pattern and how it is visualized with 

a superimposed grid in a physical plane strain specimen of sand (left - taken from 

Alshibli and Sture 2000) and a numerical DEM specimen (right). 

Other methods of identifying shear bands in laboratory tests are photographic techniques 

such as the aforementioned stereophotogrammetry method (Desrues and Viggiani 2004), 

digital image correlation (Rechenmacher and Finno 2003, Rechenmacher 2005), and X-

ray computed tomography (Batiste et al 2004, Alshibli and Hasan 2008).  These methods 

are capable of taking images of the specimen over small time increments to measure the 

local displacement mechanisms involved in shear band initiation and evolution. While 

these techniques provide high-resolution data, other micromechanical techniques, such as 

DEM, are capable of providing information on the particle scale anywhere within the 

specimen (as opposed to only on the surface) , which enables further analysis of the 

mechanisms that drive shear banding.  
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The micromechanics of shear bands are typically studied using imaging 

techniques and numerical simulations (e.g. Alonso-Marroquín and Vardoulakis 2005, 

Oda and Kazama 1998, Brodu et al. 2015, Zhou et al. 2017). Historically, most 

micromechanical studies have been done in two dimensions and in a qualitative manner. 

Recently, however, an outflux of research has been taking a more quantitative approach 

to understanding micromechanics by the examination of particle fabric evolution (Kuhn 

et al. 2015, Jing et al. 2017), particle crushing (Ma et al. 2016, Zhou et al. 2017), and 

other local particle statistics. A similar motivation in this study is applied to describing 

the behavior of shear banding. Micromechanical measures such as rotations, moments, 

and antisymmetric stresses are examined to quantify shear band motion before and during 

formation. 

Continuum Properties and DEM 

The Asymmetry of the Stress Tensor 

The stress tensor, 𝜎𝑖𝑗, completely describes the state of stress at a point and is 

written in matrix form as 

 𝜎𝑖𝑗 =  [𝜎] =  [

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

]. (3.1) 

It can be decomposed into a symmetric part (using index notation), 

 𝜎𝑖𝑗
𝑠 =

1

2
(𝜎𝑖𝑗 + 𝜎𝑗𝑖) (3.2) 

and an antisymmetric part, 

 𝜎𝑖𝑗
𝑎 =

1

2
(𝜎𝑖𝑗 − 𝜎𝑗𝑖). (3.3) 
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While the stress tensor can only be symmetric is a standard continuum, in DEM and 

Cosserat media, the antisymmetric part is non-zero. This asymmetry in the stress tensor is 

not a new concept in soil mechanics, but has been noted by several researchers (e.g., 

Bardet and Vardoulakis 2001, Tordesillas and Walsh 2002, Kuhn 2003, Goldhirsch 

2010). However, understanding its role in shear band formation and evolution has not 

been explored.  

A Cosserat continuum is one in which each material point is considered an 

infinitesimal rigid body. Cosserat theory is discussed in this thesis as a potential option 

for understanding DEM data in continuum terms. Localization of strain in granular media 

leads to a change in scale of the problem such that the phenomena occurring at the 

granular scale cannot be ignored in considering the macroscale behavior (Vardoulakis 

and Sulem, 1995). Thus, a theory that accounts for the micromechanics of a material, 

including particle rotation and shear band thickness, such as Cosserat theory, is needed. 

Cosserat theory is an extension of classical continuum mechanics in which additional 

kinematical (rotational) degrees of freedom are utilized.  In a Cosserat media, each 

particle is individually characterized by a velocity vector and a rotation vector.  

In traditional continuum mechanics, the general principles and laws that apply to 

the continuum are the locality of neighboring material points, conservation of mass, 

conservation of linear momentum, conservation of angular momentum, and the first and 

second laws of thermodynamics. It is from the balance of linear momentum that we 

arrive at the differential equations of equilibrium 

 𝜎𝑗𝑖,𝑗 + 𝜌𝑏𝑖 = 𝜌𝑣̇𝑖 (3.4) 
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where 𝜎𝑗𝑖,𝑗 is the Cauchy stress tensor, 𝜌𝑏𝑖 are body forces, and 𝑣̇𝑖 is the acceleration of 

the material point. The balance of angular momentum taken for an arbitrary volume (i.e., 

in its local form) is expressed as  

 𝜀𝑖𝑗𝑘𝜎𝑗𝑘 = 0  (3.5) 

where 𝜀𝑖𝑗𝑘 is the permutation tensor. This ensures that the Cauchy stress tensor is 

symmetric (i.e., 𝜎𝑗𝑘 = 𝜎𝑘𝑗).  

Cosserat theory considers a continuum with a microstructure. It adds additional 

rotational degrees of freedom to the kinematics of the material points. In doing so, the 

rotations in the microstructure have to be balanced with couples in the equilibrium 

equations. In the case where there is a gradient in the couple (i.e., there is a rate of change 

in angular momentum) the Cauchy stress tensor can no longer be symmetric (i.e., 𝜎𝑗𝑘 ≠

𝜎𝑘𝑗). The balance of linear momentum for a Cosserat continuum is the same as that of a 

traditional continuum. However, to accommodate the presence of couple stresses, the 

equilibrium equations in Cosserat theory include 9 couple stresses, 𝜇𝑖𝑗, which, summing 

over the moments for a differential element gives 

 𝜇𝑗𝑖,𝑗 +  𝜀𝑖𝑗𝑘𝜎𝑗𝑘 = 𝐼𝜔̇𝑖.  (3.6) 

Here, the couple stresses are torques per unit area, and are associated with the 

rotation of the material points. It can easily be shown in this case that if you have a net 

moment applied to the system, or a non-zero couple stress that isn’t balanced by the net 

moment, that the stress tensor will not be symmetric. 

In classical continuum theories, the stress tensor is required to be symmetric if 

moment equilibrium is to hold true. However, moment equilibrium is not present on the 

discrete scale in granular media. The hypothesis is that the slips that we see along the 
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shear bands are from particles attempting to rotate, building up a moment, and finally 

rotating. Once the particles rotate, that moment disappears. In visualizing the data, we 

can see which particles are building up a large moment and at what point the moment 

vanishes.  

DEM Formulation 

The study of shear banding spans multiple length scales. The motivation behind 

using micromechanical models to study shear banding is that the behavior of a soil 

sample (macroscale) is governed by the shear band, and the mechanics of the shear band 

are governed by the individual particles (microscale). Thus, a model that accounts for 

macroscale phenomena by calibrating only particle scale behavior is desirable for 

studying shear banding in granular media. DEM is used in this study because of its 

capability of producing such a model.  

In this study, DEM simulations were carried out using a three-dimensional 

discrete element code. This is a non-commercial research code that was developed in 

house under a partnership between the United States Army Corps of Engineers Research 

and Development Center (ERDC) and Mississippi State University. In DEM, the particle 

physics are governed by the laws of motion and simple contact laws. The formulation 

(given by Peters et al. 2016) for the velocities (linear and rotational) are computed by 

integrating Newton’s laws,  

 𝑚
𝜕𝑣𝑖

𝜕𝑡
= 𝑚𝑔𝑛𝑖

𝑔
+ ∑ 𝑓𝑖

𝑐𝑁
𝑐=1   (3.7) 

and  

 𝐼𝑚𝜌
𝜕𝑤𝑘

𝜕𝑡
= ∑ 𝜀𝑖𝑗𝑘𝑓𝑖𝑥𝑗

𝑁
𝑐=1 + ∑ 𝑚𝑘

𝑐𝑁
𝑐=1 ,  (3.8) 
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where 𝑚 is the particle mass, 𝐼𝑚 is the moment of inertia, 𝑔𝑛𝑖
𝑔

is the acceleration due to 

gravity, and 𝑚𝑘
𝑐  is the contact moment. Notice the similarities between Equation 4.8 and 

Equation 4.6. Table 4.1 provides a summary of the relationship between DEM and 

Cosserat theory. 

The contact laws that govern the particle interactions are given by equations 4.9 – 

4.11.  

 𝑓𝑛 = {
𝐾𝑛∆𝑛

𝐸𝑟𝐾𝑛(∆𝑜 − ∆𝑛),
     

∆𝑛< ∆𝑜   (3.9) 

 𝑓𝑖
𝑠 = {

𝐾𝑠∆𝑖
𝑠

𝑓𝑛 𝑡𝑎𝑛 𝜙 𝑛𝑖
𝑠 ,

     
|𝑓𝑖

𝑠| ≥ 𝑓𝑛 tan 𝜙 
 (3.10)  

and  

 𝑚𝑖
𝑐 = {

𝐾𝑚∆𝜔𝑖
𝑐

𝑓𝑛 tan 𝜙𝑚  𝑛𝑖
𝑚,

     
|𝑚𝑖

𝑐| ≥ 𝑓𝑛 tan 𝜙𝑚 
 (3.11) 

where 𝐾𝑛 and 𝐾𝑠 are the normal and shear stiffness constants, respectively; 𝐸𝑟 is the 

energy dissipation factor; ∆𝑛 and ∆𝑖
𝑠 are the normal and shear components of the contact 

displacements; 𝑛𝑖
𝑠 and 𝑛𝑖

𝑚 are the unit vectors for the shear force and moment; ∆𝑜is the 

greatest value of penetration in the history of ∆𝑛; and 𝜙 is the sliding friction and 𝜙𝑚 is 

the rolling friction parameters. These contact laws and the parameters used for them play 

an important role in the micromechanical behavior of the particles as well as the bulk 

response of the material. It is for the that reason that DEM is qualified as a proper tool for 

the study of instability due to shear banding. 

The Antisymmetric stresses that arise out of Cosserat theory are a naturally 

emergent feature of the DEM particle assemblies. The particle definition of stress (see 

Peters et al. 2005) in DEM is well established and is defined as   
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 𝜎𝑖𝑗
𝑝 =

1

𝑉𝑝
 ∑ 𝑓𝑖

𝑐𝑥𝑗
𝑐𝑁

𝑐=1         𝑖, 𝑗 = (1,2,3) (3.12) 

where 𝑉 is the total solid volume of a particle, 𝑁 the number of contacts for a particle, 𝑓𝑖
𝑝
 

is the contact force applied at the contact, and  𝑥𝑗
𝑝

 is the spatial position (Figure 4.2). 

Note, the 𝑝 in the superscript denotes that the quantity is for a single particle, and the 

superscript 𝑐 denotes a particular contact. The antisymmetric portion of the stress tensor 

is 

 𝜎𝑖𝑗
𝑎𝑝 =

1

2
(𝜎𝑖𝑗

𝑝 − 𝜎𝑗𝑖
𝑝)  =

1

2
 [∑ (𝑓𝑖

𝑐𝑥𝑗
𝑐 − 𝑐 𝑓𝑗

𝑐𝑥𝑖
𝑐)]   (3.13) 

The relationship between the antisymmetric component of the particle stress and 

the sum of the contact moments 𝑀𝑖 on an individual particle, is seen clearly through 

expansion of the definition of the moment (cross product),  

 𝑀𝑘 =  ∑ 𝜀𝑖𝑗𝑘𝑓𝑖
𝑐𝑥𝑗

𝑐𝑁
𝑐=1 .  (3.14) 

where the summation from one to three on the indices is assumed and 𝜀𝑖𝑗𝑘 is the 

permutation tensor. Expanding equation 4.11 locally and dropping the summation 

symbol, we find 

 𝑀1 =  𝑓2𝑥3 − 𝑓3𝑥2  

𝑀2 =  𝑓3𝑥1 − 𝑓1𝑥3  

and  

𝑀3 =  𝑓1𝑥2 − 𝑓2𝑥1.  

Or, in general, 

 𝑀𝑘 =  ∑ 𝑓𝑖
𝑐𝑥𝑗

𝑐 − 𝑓𝑗
𝑐𝑥𝑖

𝑐𝑁
𝑐=1   (3.15) 

Therefore, combining equations 4.13 and 4.15 and adding in the contact moments, the 

antisymmetric stresses are related to the moments by, 
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 (𝜎𝑖𝑗
𝑝)𝑎 =  

1

2𝑉𝑝
(𝑀𝑘).  (3.16) 

Rotation of particles in DEM occurs when the contact moments that resist rotation 

break down because a certain rolling resistance threshold is exceeded. Since particles must 

rotate to form shear bands, there could be some indicator through the antisymmetric 

stresses that a shear band is about to form. The purpose of this paper is to visualize the data 

from DEM simulations in such a way that the kinematics of the shear band can be qualified 

in such a way that can support future mathematical quantification.  

 
 

Figure 4.3 Particle contacts illustration for stress calculations. 

Table 4.1 Bridging the scales: DEM and Cosserat Continuum 

Variable Discrete Element Method Cosserat Continuum 

Stress 𝑓𝑖
𝑐 𝜎𝑖𝑗 

Couples 𝑚𝑖
𝑐 𝜇𝑖𝑗 

Moments 𝜀𝑖𝑗𝑘𝑓𝑖
𝑐𝑥𝑗

𝑐 𝜎𝑖𝑗 − 𝜎𝑗𝑖 

Linear Momentum Balance 𝑚
𝜕𝑣𝑖

𝜕𝑡
= 𝑓𝑖

𝑔
+ ∑ 𝑓𝑖

𝑐

𝑁

𝑐=1

 𝜌𝑣̇𝑖 = 𝜌𝑏𝑖 + 𝜎𝑗𝑖,𝑗 

Angular Momentum 

Balance 
𝐼𝑚𝜌

𝜕𝑤𝑘

𝜕𝑡
= ∑ 𝜀𝑖𝑗𝑘𝑓𝑖𝑥𝑗

𝑁

𝑐=1

+ ∑ 𝑚𝑘
𝑐

𝑁

𝑐=1

 I𝜔̇𝑖 = 𝜀𝑖𝑗𝑘𝜎𝑗𝑘 + 𝜇𝑗𝑖, 𝑗 

𝐴 

𝐵 

𝑥𝑐
𝐴 

𝑓𝑐 
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Table 4.1 was adapted from personal communication with Peters (2017). 

Methodology 

 For the purpose of studying the role of the antisymmetric stress in shear banding, 

three-dimensional, plane strain, discrete element simulations were performed to capture 

the kinematics of shear bands. Initialization of the simulations began with constructing an 

array of spheres (particles) of various radii within a specified size distribution were 

generated in three dimensions on a specified lattice as using the RANDOM_NUMBER 

function in FORTRAN 90. Figure 4.4 shows the assembly of particles consisting of 64000 

particles with radii between 2.5 and 5.0 mm. The spheres were then isotopically 

consolidated without gravitational bias or friction until a small positive stress was 

measured at the boundaries. Several iterations of consolidation and energy dissipation was 

required to be able to maintain a small positive stress. Once the kinetic energy was 

sufficiently dissipated in the specimen, interparticle friction was applied and the system 

was loaded to a confining pressure of 55 kPa. 

 

Figure 4.4 Distribution of particle sizes 
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The particle assembly if the initial plane strain configuration after isotropic consolidation. 

The radii of the particles are randomly distributed between 2.5 and 5.0 mm. 

The particles in the simulations are, by necessity, larger than those of typical of 

laboratory testing of soils. Particle size can become an issue in the simulations when 

large rotation gradients are present, such as those observed in shear bands. This is 

accounted for by dimensional analysis which is used to ensure that similitude is 

maintained between the simulation and prototype scaling (Horner and Peters, 2000). 

Shear bands generally have a thickness of 10– 20 particles (Rice, 2006). thus, a 

simulation of a fully developed shear band would need to include the shear band plus the 

surrounding shear zone.  

 After initialization and confinement, a plane strain constant volume 

loading regime was applied to the sample. The initial geometry and relevant particle 

parameters used in the simulation are summarizes in Table 3.1.  

These parameters were chosen based on prior calibration performed by Goodman 

et al. (2017). The platens on the broad face of the specimen were kept in plane strain 

(𝜀𝑥 = 0, where 𝜀𝑥 strain in the x-direction.), while the top and bottom platens compressed 

the specimen with a constant velocity. The y-platens were then adjusted at every DEM 

time step to ensure the change in volume throughout the simulation remains zero. Finally, 

the simulations were ran until a total axial strain, 𝜀𝑧, of 15% was achieved.  

From the plane strain simulations, three sample sizes where used to analyze the 

behavior of the system. First, the average behavior of the entire population of particles is 

considered. Second, a sample of only those particles that become part of the shear band 
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are studied. Finally, a sample of only those particles that are not a part of the shear band 

are examined.  

Results and Discussion 

 Three cases were studied to see how the  𝜎23
𝑎  component of stress, out of 

plane rotation, out of plane contact moment, and particle porosity evolved throughout the 

constant volume simulation. The three cases are 1) the whole specimen consisting of 

64000 particles, 2) the shear band only, and 3) outside the specimen, each consisting of 

1000 particles. These three cases are illustrated in Figure 4.5. 

 
 

Figure 4.5 The three cases examined. 

Illustration of the three cases examined: a.) the shear band only, b.) outside of the shear 

band, and c.) the whole specimen. 

The cases a.) and b.) in Figure 4.5 were chosen by visual inspection of the angular 

velocities. That is, if the contours showed a significant angular velocity was considered 

as part of the shear band which implies a strong gradient of rotation across the shear 

band. The shear band begins to visually form at peak stress and at a strain of around 

a.) b.) c.) 
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3.6%, and is fully developed by 5% strain. This is shown in the stress strain curve for the 

simulation (Figure 4.7).  

Figure 4.6 provides further evidence for the hypothesis that the moments or 

antisymmetric stresses play a vitol role in shear band formation. The snapshots in Figure 

4.6 were made by holding all input parameters contant, and varying only rolling 

resistance. Each snapshot was taken at approximatly 10% strain during the simulation, 

and the contours show the vertical component of the particle velocity. The rolling 

resistance applied to the spherical particles can be thought of as a Cosserat couple which 

contributes to the total moment (and therefore the antisymmetric stress) for each particle. 

If the rolling resistance facor is increased above a certain threshhold, the moments in the 

partcles do not allow the particles to rotate, and thus, no force chains break down and no 

shear band is able to form.  

 

Figure 4.6 Shear band pattern and rolling resistance 

Screenshots at 10% strain of the plane strain specimen at various values of rolling 

resistance as noted above each specimen. The colors represent velocity in the vertical 

direction. 

1.27 0.0 

0.5 0.1 0.01 0.001 0.000 
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In the case of no rolling resistance, there is nothing to keep the particles from 

rotating, and nothing to resist shear band formation. From this point of view, Figure 4.6 

shows clearly that the shear band intersects the corner of the walls of the apparatus 

(platens not shown for clarity). Thus, it appears that the specimen geometry controls the 

shear band orientation when rolling resistance is zero.  

 

Figure 4.7 Stress – strain curve for the constant volume simulation 

Stress-strain curve for the constant volume simulation with a marker indicating the onset 

of shear band formation at 3.6% strain. 

The rotations of the individual particles were determined by examining the 

angular velocities of the particles. Figure 4.8 shows how the rotations vary as axial strain 

increases throughout the course of the simulation for the entire specimen. The rotations 

are initially scattered throughout the specimen, but localize in the shear band at a very 

early time in the stress-strain history. Once formed, the localized rotations carry on 

throughout the entirety of the simulation.  
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Figure 4.8 Angular velocity 

Angular velocity of the particles, 𝜔𝑥 localizing into the shear band. 

Figure 4.9 shows what is happening to the angular velocities as a function of 

strain for each of the three cases. For the entire specimen the average angular velocity 

remains fairly constant throughout the simulation. The particles outside of the band show 

similar behavior. Inside the band, however, the particle rotations spike, highlighting 

where all of the deformation is taking place. This increase in rotation in the shear band 

appears to come after shear band formation, indicating that the rotations are a result of the 

shear band formation rather than a cause of shear band formation.  

𝜀𝑧 = 0% 𝜀𝑧 = 1.7% 𝜀𝑧 = 3.6% 𝜀𝑧 = 5.5% 

𝜀𝑧 = 7.4% 𝜀𝑧 = 9.4% 𝜀𝑧 = 11.3% 𝜀𝑧 = 15.0% 
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Figure 4.9 Average angular velocity for all three cases 

Comparison of average angular velocity for each output time step for the three cases 

throughout the strain history of the specimen. 

Figures 4.10 and 4.11 show the evolution of the contact moment (couples) for the 

particles. The average moment at each output time step oscillates about zero for the 

entirety of the simulation. After the shear band forms, bursts of moments are 

concentrated around the shear band, and highlight the location of the shear band similar 

to the rotation plots. The magnitudes of the oscillations begin to increase for all three 

cases after 5% strain (Figure 4.11). Like the rotations, the plots seem to indicate that the 

moments are affected by the shear band rather after formation rather than vice versa. It 

should be clarified reiterated that the contact moments are artificially introduced in the 

DEM to add a rolling resistance to the spherical particles. Although the couple moment is 

quite small in magnitude, its impact on the asymmetry of the stress tensor and impact on 

the microstructural behavior of the granular media is important (Oda and Iwashita 2000).  
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Figure 4.10 Particle contact moments 

Particle contact moments, 𝑚𝑥 at regular time intervals throughout the simulation. 

 

 

𝜀𝑧 = 0% 𝜀𝑧 = 1.7% 𝜀𝑧 = 3.6% 𝜀𝑧 = 5.5% 

𝜀𝑧 = 7.4% 𝜀𝑧 = 9.4% 𝜀𝑧 = 11.3% 𝜀𝑧 = 15.0% 
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Figure 4.11 Average contact moments for all three cases 

Comparison of the three cases for the contact moments throughout the strain history. 

Figure 4.12 shows the evolution of the antisymmetric stress component 𝜎23
𝑎  

throughout the simulation. Throughout the course of the simulation, the antisymmetric 

stress 𝜎23
𝑎  becomes increasingly non-zero because the contact moments/couples become 

significant. The other components of the antisymmetric stresses show similar patterns as 

Figure 4.12. Figure 4.13 shows that for each case, the antisymmetric stresses have an 

initially constant trend. Following shear band formation, the particles inside and outside 

of the shear band exhibit similar behavior and become increasingly positive as the 

simulation continues. It is difficult, based on the visualization techniques used here, to 

determine what portion of this behavior is attributed to the shear band formation. 

Visualizations of the symmetric components of stress (not shown) shows similar behavior 

as the antisymmetric components.  
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Figure 4.12 Antisymmetric stresses  

Antisymmetric stresses 𝜎23
𝑎  for each particle at regular time increments throughout the 

simulation. 

𝜀𝑧 = 0% 𝜀𝑧 = 1.7% 𝜀𝑧 = 3.6% 𝜀𝑧 = 5.5% 

𝜀𝑧 = 7.4% 𝜀𝑧 = 9.4% 𝜀𝑧 = 11.3% 𝜀𝑧 = 15.0% 
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Figure 4.13 Average antisymmetric stress for all three cases 

Comparison of the three cases for the antisymmetric stresses throughout the strain 

history. 

The particle porosities in Figure 4.14 gives the porosity found using an algorithm 

which loops through all the spheres, specifies a spherical sampling volume (around each 

particle, and measures the solid fraction of the objects within that sphere. Note that the 

particles highlighted around the boundary are ignored because the high porosity is a 

boundary effect of the algorithm taking into account a portion around the sphere that has 

no solid fraction because it is outside of the boundary. Figure 4.15 shows that dilation 

occurs within the shear band, and the density increases outside of the shear band.  
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Figure 4.14 Local porosity 

Local porosities show dilation after shear band formation. 

𝜀𝑧 = 0% 𝜀𝑧 = 1.7% 𝜀𝑧 =3.6% 𝜀𝑧 = 5.5% 

𝜀𝑧 = 7.4% 𝜀𝑧 = 9.4% 𝜀𝑧 = 11.3% 𝜀𝑧 = 15.0% 



www.manaraa.com

 

55 

 

Figure 4.15 Average local porosity throughout the simulation 

Comparison of the three cases for porosity throughout the strain history 

One possible explanation of the results is that the output resolution of the 

simulation was not high enough to capture the effects of antisymmetric stresses on the 

shear bands. The output resolution for the constant volume simulation was 40 “frames” 

per second. That is, output data for every particle was gathered 40 times per simulation 

second. To test this, the same constant volume simulation was re-ran with an output 

resolution of 100 frames per second (data not show). Even at this resolution the results 

indicated that all activity for the variables involved occurred in the post-shear band 

stress-strain history. More resolution than that is feasible, but not practical.  

One thing to note regarding the figures presented in this section, is that the shear 

bands are considered fully mobilized when rigid body displacement is present 

everywhere in the specimen except in the shear band. Figure 4.6 shows shear band 

formation in terms of the partcile velocity, and it is clear that ridid body displacement is 
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occuring throughout the sections of the speciment separated by the shear band. The 

figures showing how the different measures evolve throughout the stress strain history of 

the specimen (particularly Figures 4.8 and  4.14) show that rigid body displacments are 

certianly not occuring inside the shear band. 

Conclusions 

Constant volume plane strain DEM simulations were performed to examine the 

relationship between shear band evolution and particle rolling, particle area porosity, 

contact moments, and antisymmetric stresses. 3 sampling cases were tested: 1) the entire 

particle population, 2) the shear band only, and 3) outside of the shear band. The 

antisymmetric stresses, in theory, were of interest as a possible indicator or shear band 

formation. Antisymmetric stress is a continuum concept that appears in micro-polar 

continua like Cosserat media, and is a naturally emergent feature of the DEM. It was 

hypothesized that the antisymmetric stresses would highlight the region where the shear 

band was going to form. 

The qualitative and quantitative behavior of the antisymmetric stresses didn’t 

appear to validate the hypothesis. Antisymmetric stresses, like rotations, moments, and 

particle porosity, appear to be effected by the shear band formation rather than the other 

way around. This finding demonstrates that the shear band may govern the constitutive 

response of the material rather than the constitutive response dictating the shear band. A 

better understanding of the mathematics of shear band formation, specifically, pre-shear 

band conditions is needed for better understanding of the actual constitutive behavior and 

the role that the shear band plays in the behavior and vice versa. 
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CONCLUSIONS 

Summary of Findings 

This study used three dimensional, plane strain, discrete element simulations to 

study shear banding in granular media. Chapter 1 introduced the problem of shear 

banding and gave a broad overview of the thesis. Chapter 2 presented the necessary 

background information for studying shear banding in granular media.  The two major 

methods of studying shear banding, bifurcation theory and micromechanics were also 

presented and discussed in their present context. 

 In chapter 3, a DEM model was developed and calibrated to simulate real sand. 

The calibration parameters showed a great sensitivity to rolling and sliding friction. Two 

different stress paths from  two confining loading conditions, displacement- and force-

controlled, were applied to the same reference assembly of particles. The results of the 

calibrated DEM specimen showed variation in shear band patterns and orientations under 

different loading conditions. These variations were similar to those found in physical 

laboratory testing performed on sand. This demonstrates the DEM simulation’s ability to 

capture the potential mechanisms that drive shear band formation.  

Chapter 4 presents a methodology and philosophy for studying the evolution of 

shear banding in soil, and relating it to continuum variables. In continuum mechanics, the 

stress tensor required to be symmetric if moment equilibrium is to hold true. However, 
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for each particle in our specimen moment equilibrium is not present on the discrete scale. 

This is evident from the presence of rotations that occur in physical and numerical 

simulations of laboratory tests on sand. Under homogeneous loading conditions, a 

continuum of particles should not have rotations. Not only are rotations present, but when 

the shear bands appear there are gradients in rotations. According to Cosserat theory, such 

gradients give rise to asymmetric terms in the stress tensor. 

 The hypothesis was that the slips that we see along the shear bands are from 

particles attempting to rotate, building up a moment, and finally rotating. Once the 

particles rotate, that moment disappears. In visualizing the high-resolution data, we could 

potentially see which particles are building up a large moment and at what point the 

moment vanishes. It was shown how these moments are related to the antisymmetric 

stresses. However, the hypothesis did not hold as expected. Visualizations of the data 

indicated that the antisymmetric stresses, moment, rotations, and porosities were all 

affected by the formation of the shear band rather than the other way around. This does 

not disprove the hypothesis, rather it indicates that our understanding of how the shear 

bands are formed is incomplete. 

Recommendations for Further Research 

In doing the research for this thesis, there are several items of business that call 

for further research and development. First, the need for improved visualization 

techniques for the study of shear banding is needed. Visualization is a vital tool for any 

numerical studies. It can also be a cumbersome task to develop user friendly and efficient 

visualization tools. Improved visualization techniques may include algorithms that are 

able to quickly identify which particles are a member of a shear band and extract data 
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specific to those particles. This would also be a useful tool for finding which particles 

were not members of a shear band and separately extracting those as well. 

Another recommendation for further research is optimized calibration techniques 

for DEM modeling of granular media. All of the calibration done in this study was 

through trial and error. This is very time consuming and computationally expensive. 

Rackl and Hanley (2017) present a semi-automated and methodical method for 

calibrating DEM parameters using Latin hypercube sampling and kriging which appears 

promising. They are capable of optimizing the time step in the DEM as well as the 6 + 

parameters that need calibrating using their methodology. This optimizes computational 

efficiency as physical veracity in the DEM simulations. Further research in obtaining 

easy to use calibration techniques would improve research efficiency and effectiveness. 

In addition to the calibration and visualization techniques, a study where a shear 

banding analysis done using Cosserat theory would be helpful. For this type of study, 

constitutive equations would need to be developed to utilize the continuum theory, and 

these would need to be tested under a variety of initial and boundary conditions. This 

could be implemented into typical continuum solvers such as a finite element code and 

would overcome the deficiencies of constitutive equations in classical continuum 

mechanics. However, prior to any study like this, the mathematics of localization would 

need to be developed, and DEM or other micromechanical analysis tools are promising 

for aiding in this task. 
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